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Optimization of tree-shaped fluid networks with size limitations
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Abstract

In this paper, we show how to minimize the pumping power requirement in a fluid tree-shaped network under different size constraints (volume,
surface, length). The Lagrange multiplier method is applied to obtain a problem formulation in which the pipe diameters do not appear explicitly.
It is found that such a formulation exists for both volume and surface constrained networks. In Y-shaped junctions, optimal angles of branching
and diameter ratios are determined. A different approach aiming at minimizing the network global cost (summation of size and pumping costs)
is presented. It is showed that the geometrical features of the network are the same when one minimizes the global cost rather than minimizing
pumping power under constraint. An optimal allocation of cost between pumping and size limitation was found. Finally, we extend the global
cost minimization approach to the design of a porous architecture. This article provides fundamental tools for the designers of fluid tree-shaped
networks.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The principle-based generation of tree-shaped fluid net-
works (e.g., river basin, air passage in the lung, blood vascular-
isation, water distribution networks, solar panels, cold plate for
the cooling of electronics) is a significant outcome of construc-
tal theory [1–9]. The objective of fluid networks is to provide
an easy access for fluid flow (low power dissipation). They
are commonly used in energy transport and energy conversion
systems (e.g., fuel cells [10,11], heat exchangers [12–15]). Op-
timizing such fluid networks means finding the best pipe con-
nections (topology), diameters, mass flow rates, and branching
angles for minimizing the power requirement or pressure drop.
For optimal flow architecture to emerge, it is necessary to in-
clude global size constraints in the analysis (otherwise the result
of the “optimization” is an infinitely large system) to take into
account the fact that space is expansive and limited. Therefore,
every part of the flow system must compete for filling the avail-
able space, and tradeoffs are to be made to allocate optimally
the space while respecting the size-limiting requirements.
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In the references mentioned above, Refs. [1–9], the pumping
power requirement of fluid distribution networks is minimized
based on a constrained total network volume. In several appli-
cations, however, important is not only the volume occupied by
the network, but also its total surface area, its total length or a
combination of different size-limiting constraints.

The main objective of this paper is to address the impacts of
the network size-limiting constraints that are considered in the
optimization (e.g., surface, volume, length), and of the way in
which these size limitations are included in the analysis. First,
we extend the equivalent network optimization problem formu-
lation developed in Ref. [4] which is based on the Lagrange
multiplier method in order to decrease the number of degrees of
freedom (DOF) of the problem. This approach was originally
developed for volume constrained networks, and is extended
here to other size-limiting constraints (e.g., surface area). Next,
we propose to include the size-limiting requirement directly in
the function to be minimized: the size-limiting considerations
are translated in terms of costs, and the total cost (summation
of pumping power and size-related costs) is minimized. Finally,
we design a pore network (i.e., porous medium) by taking into
account the surface-related cost and the pumping power cost.
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Nomenclature

c coefficient of proportionality
C cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $
D diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
f friction factor
h Murray’s law exponent
K permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

L length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
ṁ mass flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . kg s−1

N number of pipes
S surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

V volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

Ẇ power requirement . . . . . . . . . . . . . . . . . . . . . . . . . . W

Greek symbols

α exponent for the equivalent problem formulation

φ porosity
λ Lagrange multiplier
ν viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

θ angle, degree
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

Subscript

e, k pipe (edge)
min minimized
opt optimal
ref reference

Superscript

∼ dimensionless quantity
′ quantity per unit of length
The results presented in this paper are fundamental, and can be
applied to any fluid flow tree-shaped network.

2. Laminar fully developed flow networks with surface
area constraint

Consider a set of fluid users that are to be connected with
pipes to a fluid source. The fluid consumption of every user is
considered to be known, and so is their location. For example,
a typical problem would be to connect a source located in the
center of a disc-shaped area to users equidistantly positioned on
the outer rim of the area [4,8], as shown in Fig. 2. The flow pro-
ceeds from the center of the disc to the outer rim. This problem
became a benchmark for studying the generation of optimally
shaped fluid tree networks [8]. The general problem of tree-
shaped network optimization consists in finding the optimal
topology (i.e., way of connecting the pipes) and pipe geometry
(diameters, lengths) for minimizing power requirement under
size constraint. Due to the potentially large number of degrees
of freedom involved in the network optimization problem, it is
in general a very challenging problem.

Assuming laminar fully developed flow in a pipe of length L

and diameter D, the power dissipated in friction in the pipe is
128νṁ2L/(πρD4) [4], where ṁ is the mass flow rate in the
pipe. The total power requirement for driving the flow in the
entire network is simply the summation of the power dissipated
in each pipe of the network, leading to

Ẇ = 128ν

πρ

∑
e

ṁ2
eLe

D4
e

(1)

The summation in Eq. (1) is over all the pipes “e” of the net-
work. To write Eq. (1) we neglected the junction losses, and
we considered a Newtonian fluid with constant properties. Our
objective is to minimize the power requirement, Eq. (1), by
varying the network topology and the pipe diameters. Some au-
thors prefer to minimize the total pressure drop rather than the
pumping power. However, it has been demonstrated by Gos-
selin and Bejan [4] that in general minimizing pressure drop
is not equivalent to minimizing pumping power. Therefore, we
chose to minimize the pumping power in this paper.

Looking at Eq. (1), it becomes obvious that some size-
limiting constraint involving the diameters of the pipes must
be invoked in order to optimize the fluid network. Otherwise
the diameters of the pipes in the optimal network would be
infinitely large, De → ∞, leading to Ẇ = 0. This is clearly
unrealistic. Heavy and large systems are expensive to build,
maintain and transport, and this must be taken into account.

As mentioned in the introduction, a fixed total network vol-
ume V is often considered when optimizing fluid networks
[1–9]. Here, we consider networks such that the size limita-
tion is governed by a surface constraint. For example, in fluid
distribution devices, the total pipe surface is a measure of the
mass of the pipe system (surface × thickness of the wall × den-
sity) [16], which needs to be limited. Similarly, for the transport
and distribution of hot water, the heat losses to the environment
are proportional to the surface area [7]. Therefore these applica-
tions demand a small total surface area. The total surface area of
the network is the summation of the surface area of each pipe,

S =
∑

e

πDeLe (2)

While minimizing Eq. (1) we want to respect the size con-
straint, Eq. (2). To do so, we apply the Lagrange multiplier
method,

∂Ẇ

∂Dk

+ λ
∂S

∂Dk

= 0, k = 1, . . . ,N (3)

where the index k runs from 1 to N , the number of pipes in the
network. The combination of Eqs. (1)–(3) delivers the Lagrange
multiplier λ

λ = 512νṁ2
k

π2ρD5
k

(4)

In more speaking words, we can say from Eq. (4) that the
ratio ṁ2/D5 is a constant for all the pipes in an optimized
network. Similarly, we note that in an optimal network, two
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Fig. 1. The geometric features of a Y-shaped junction with equal splitting of the
incoming flow.

pipes have the same diameter when they carry an equivalent
mass flow rate. Eq. (4) is equivalent to Murray’s law [17].
A Y-shaped junction with equal division of the flow, Fig. 1, is
such that a larger mass flow rate 2ṁ divides into two smaller
ṁ-streams. This means that the optimal diameter ratio between
the two levels of branching in Fig. 1 (i.e., between the 2ṁ- and
the ṁ-pipes) for a network with a fixed surface area is(

Dṁ

D2ṁ

)
opt

= 2−2/5 (5)

This result is different than in volume constrained networks
where this ratio was 2−1/3 [4,8,17]. In other words, the pipe
diameters in optimal V -constrained networks will tend to look
more uniform than in S-constrained networks. Eq. (5) has been
reported earlier for a surface constrained T-shaped duct assem-
bly by Bejan et al. [16].

Introducing the Lagrange multiplier, Eq. (4), in Eq. (1) we
obtain

Ẇ = λ

4

∑
e

πDeLe = λ

4
S (6)

The Lagrange multiplier λ is proportional to the power re-
quirement. In other words, minimizing λ is equivalent to mini-
mizing Ẇ . Eq. (4) is then introduced into the constraint, Eq. (2),

Sρ1/5λ1/5

π3/529/5ν1/5
=

∑
e

ṁ
2/5
e Le (7)

which allows us to write the power requirement (to be mini-
mized with respect to the topology) as

Ẇ = π329ν

4ρS4

(∑
e

ṁ
2/5
e Le

)5

(8)

Eq. (8) leads to two important conclusions. The first is that
minimizing power requirement in a tree network when the to-
tal surface area is constrained (fixed value of S) is equivalent to
minimizing the summation

∑
e ṁ

2/5
e Le (i.e., the Lagrange mul-

tiplier). This formulation has the significant advantage that it
does not involve the pipe diameters (less degrees of freedom).
The only unknown becomes the topology. The network can be
optimized based on the sole mass flow rates and pipe lengths
information, and the optimal diameters are deduced afterward
with Eq. (4).

Note that the power requirement scales as S−4: increas-
ing the total surface area S results in smaller pumping power
requirement. Larger networks are cheaper to use in terms of
pumping power. In other words, the formulation proposed in
this section is valid when one needs to limit or restrain the to-
tal surface. Otherwise, it would make more sense to increase S

indefinitely for decreasing Ẇ . We will discuss in Section 8 an-
other situation where the total surface is to be increased as much
as possible (e.g., solid–fluid reactors).

The second important conclusion is the possibility of cal-
culating an optimal angle of branching in Y-shaped junction
with equal splitting of the flow, like the one shown in Fig. 1.
The quantity ṁ

2/5
e can be seen as a cost per unit length (since

the cost associated with each pipe in the summation of Eq. (8)
is ṁ

2/5
e Le), and based on that information, the optimal angle of

branching in Fig. 1, under surface area constraint, can be de-
duced as described by Gilbert [18], and we obtain:

θopt = 97.4378◦ (9)

The angle θ is indicated in Fig. 1. Note that this opti-
mal angle of branching was 74.9346◦ in optimized volume-
constrained networks [4,17]. A more general expression for
optimal angles of branching in asymmetrical junctions is pre-
sented in Section 4.

3. Turbulent fully developed flow in smooth pipes with
surface area constraint

In the previous section, laminar regime was assumed. In
this section, we consider the optimization of turbulent flow net-
works with a surface constraint, Eq. (2). The pumping power re-
quirement in a network with turbulent flow in smooth-surfaced
pipes can be written as [4],

Ẇ = 1.1156μ1/5

π4/5ρ2

∑
e

ṁ
14/5
e Le

D
24/5
e

(10)

assuming fully developed flow of a Newtonian fluid with con-
stant properties, and neglecting the losses at the junctions. Ap-
plying the Lagrange multiplier method with the surface con-
straint, just like we did in Section 2, leads to

λ = 5.35μ1/5ṁ
14/5
k

π9/5ρ2D
29/5
k

(11)

It can be shown that Ẇ = 5λS/24. In other words, the power
requirement is still proportional to the Lagrange multiplier. In-
troducing Eq. (11) into the constraint, Eq. (2), we obtain

Ẇ = 3493.1π4μ1/5

ρ2S24/5

(∑
e

ṁ
14/29
e Le

)29/5

(12)

Eq. (12) means that minimizing Ẇ under global surface
area constraint is equivalent to minimizing the summation∑

e ṁ
14/29
e Le, which does not involve the pipe diameters. It

is only a topology-dependant quantity. In a Y-shaped junction
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with equal splitting like the one in Fig. 1, Eq. (11) leads to
the following diameters ratio between two consecutive levels
of branching [4](

Dṁ

D2ṁ

)
opt

= 2−14/29 (13)

The optimal angle of branching in such a junction is

θopt = 91.3534◦ (14)

In volume constrained turbulent networks (with smooth-
surfaced pipes), the pipe diameters ratio was 2−7/17 and the
optimal angle of branching was 55.5302◦ [4].

4. Turbulent fully developed flow in rough pipes with
surface area constraint

When the surfaces of the pipes are rough, the friction fac-
tor f is almost independent on the Reynolds number (i.e., on ṁ

and D), and the pumping power reads as [4]

Ẇ = 32f

π2ρ2

∑
e

ṁ3
eLe

D5
e

(15)

under the same assumptions described in Sections 2 and 3.
Considering the fixed total surface area constraint, Eq. (2), the
Lagrange multiplier becomes

λ = 160f ṁ3
k

π3ρ2D6
k

(16)

It can be shown that the power minimization under surface
area constraint with turbulent flow in rough pipes is equivalent
to minimizing the quantity

∑
e ṁ

1/2
e Le. The optimal diame-

ter ratio and branching angle of a Y-shaped junction that split
equally the mass flow rate, Fig. 1, are respectively,(

Dṁ

D2ṁ

)
opt

= 2−1/2, θopt = 90◦ (17)

Note that the optimal diameter ratio above has been reported
by Bejan et al. [16] for the case of a T-shaped pipe assembly.
However, Eq. (17) is more general because it is valid for all
types of equal splitting junctions.

5. General problem formulation and “organized” flow
structure

Before presenting another way of including the size lim-
itations in tree-shaped network optimization, we summarize
in this section the main results related to the minimization of
power requirement under surface constraint presented above.
For the sake of comparison, we also report in this section the
results of power requirement under volume constraint as de-
scribed in Ref. [4].

One of the findings of Gosselin and Bejan [4] that can be
extended to surface-constrained networks is the equivalence be-
tween minimizing power requirement, and the minimization of
the quantity

∑
e ṁα

e Le, where the exponent α depends on the
flow regime in the pipes, and the size constraint that is invoked
Table 1
Exponent α for the formulation of the equivalent problem

Flow regime V -constraint S-constraint

Laminar 2/3 ≈ 0.6667 2/5 ≈ 0.4
Turbulent (smooth surface) 14/17 ≈ 0.8235 14/29 ≈ 0.4828
Turbulent (rough surface) 6/7 ≈ 0.8571 1/2 ≈ 0.5

Table 2
Optimal angle of branching θ for equal splitting Y-shaped junctions (Fig. 1)

Flow regime V -constraint S-constraint

Laminar 74.9346◦ 97.4378◦
Turbulent (smooth surface) 55.5302◦ 91.3534◦
Turbulent (rough surface) 50.1581◦ 90◦

(i.e., fixed volume or fixed surface). This summation is only
topology dependant. The possible values of α are reported in
Table 1. The values of α are larger when the flow is turbulent
than when it is laminar. Furthermore, α is smaller when a sur-
face area constraint is invoked than with the volume constraint.

In Table 2, we reported the optimal angle of bifurcation
in Y-shaped junctions in which the flow is equally split (see
Fig. 1). To illustrate how this information could be used, we
considered the benchmark problem described above and by
Wechsatol et al. [8]: a set of N users are positioned equidis-
tantly on the outer rim of a disc-shaped area, and we want to
connect them to a source located in the center of the disc. The
“simplest” configuration is to connect each user to the center
with its own single pipe (zero level of branching). This is also
the most expensive configuration in terms of power require-
ment. To reduce the power requirement, one can increase the
complexity of the dendritic structure by introducing junctions
or bifurcations (levels of branching). It has been shown that for
a given number of users on the periphery (N ) there is an op-
timal number of levels of branching [8]. The optimal position
of the branching points depends on the flow regime considered
and the invoked size constraint.

In Fig. 2, we reported the optimal dendrites (for different
flow regimes and size constraints) with two levels of branch-
ing when 16 users are positioned equidistantly on the outer rim
of the disc. In a given optimized dendrite ((a), (b), (c) or (d)),
the angle between the outlet branches of the Y-shaped junctions
(see Fig. 1) is a constant (see Table 2) as only junctions that
split the flow equally are considered. This angle is labelled θ in
Fig. 2. However, the actual value of the angle of branching de-
pends on the flow regime and size constraint considered. This
results in very different looking dendrites: the branching points
are closer to the center in Fig. 2(b) (optimal network with turbu-
lent regime (rough surface) and volume constraint) and closer to
the outer rim in Fig. 2(c) (optimal network with laminar regime
with surface constraint). Note that in earlier work on dendritic
flow architectures [8], the optimal angles of Table 2 have not
been revealed in every junction because it was assumed that the
lengths of the pipes at a given level of branching were equal, as
discussed by Gosselin and Bejan [5].
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(a) (b)

(c) (d)

Fig. 2. The optimal dendrites with two levels of branching for different flow
regimes and size constraints: (a) laminar regime with volume constraint, (b) tur-
bulent regime (rough surface) with volume constraint, (c) laminar regime with
surface constraint and (d) turbulent regime (rough surface) with surface con-
straint.

Fig. 3. The optimal angles around a junction point, Eqs. (18)–(20), with surface
constraint.

Table 3
Optimal exponent h for the diameter ratio between two consecutive levels of
branching (Murray’s law), Eq. (21)

Flow regime V -constraint S-constraint

Laminar 1/3 ≈ 0.3333 2/5 = 0.4
Turbulent (smooth surface) 7/17 ≈ 0.4118 14/29 ≈ 0.4828
Turbulent (rough surface) 3/7 ≈ 0.4286 1/2 = 0.5

An asymmetrical Y-shaped junction is shown in Fig. 3. The
fluid flow goes from the point “a” to the branching point “g”
at a mass flow rate (ṁb + ṁc). Then, a part of the flow (ṁb) is
deviated to the point “b”, and the remaining (ṁc) is transported
to “c”. In such a Y-shaped junctions the optimal angles 	 bgc,
	 agc and 	 agb can be determined straightforwardly [18] by

cos(	 bgc) = (ṁb + ṁc)
2α − ṁ2α

b − ṁ2α
c

2ṁα
b ṁα

c

(18)

cos(	 agb) = ṁ2α
c − (ṁb + ṁc)

2α − ṁ2α
b

2ṁα
b (ṁb + ṁc)α

(19)

cos(	 bgc) = ṁ2α
b − (ṁb + ṁc)

2α − ṁ2α
c

2(ṁb + ṁc)αṁα
c

(20)

The value of the exponent α is presented in Table 1, and
depends on the flow regime, and size constraint. Note that the
quantities of the type ṁα in Eqs. (18)–(20) represent the cost
per unit length of the pipe carrying the flow rate ṁ. The angles
of Eqs. (18)–(20) are reported in Fig. 3 as a function of the para-
meter ṁb/ṁc for the values of α corresponding to surface area
constrained networks. Important is that the angle 	 bgc between
the two outlet branches of a junction is almost constant irrespec-
tively to ṁb/ṁc. An equivalent figure for optimized volume
constrained networks was proposed by Gosselin and Bejan [4].
When α = 1/2 (turbulent flow in rough pipes with a surface
constraint), the angle is exactly equal to 90◦, independently of
the value of ṁb/ṁc . For optimizing a fluid network, Fig. 3 can
be used straightforwardly for determining the optimal angles of
branching (or equivalently, the position of the branching point).
Note further that when ṁb/ṁc = 1, we obtain the results of Ta-
ble 2 for equal splitting junctions.

A very general and fundamental result is the relation be-
tween the pipe diameters and mass flow rates in both volume
and surface constrained networks (Murray’s law), which can be
written as(

Dṁ1

Dṁ2

)
opt

=
(

ṁ1

ṁ2

)h

(21)

where the exponent h changes with the flow regime and size
constraint. The possible values of h are reported in Table 3. The
changes in diameters from one level of branching to another are
less important when the surface constraint is invoked than with
the volume constraint. In human lung [20], the diameter ratio
between two successive levels of branching is a constant close
to the entrance (trachea). However, as the airways get closer to
the alveoli, the changes in diameter between two consecutive
levels of branching are smoother. In other words, the exponent
h is smaller. This could be explained in part by the fact that
close to the alveoli “surface” is more important or relevant than
“volume”.

It is important to mention that Eq. (21) and Table 3 are
results of optimization, not assumptions. This feature distin-
guishes the constructal approach used in this paper from the
fractal geometry. Fractal geometry does not predict the emer-
gence of flow architectures, or the occurrence of governing
relations like Eq. (21). It is descriptive in essence. Our ap-
proach predicts the relations between geometrical features of



L. Gosselin / International Journal of Thermal Sciences 46 (2007) 434–443 439
the network, or said differently, the occurrence of organized
flow structures.

Before concluding this section, and considering another way
of including the size limitation in the network optimization, it
is worth to say a few words about the total network length.
In some applications, the total length of the network may be
a size-limiting requirement. For example, undergrounds net-
works require digging, the cost of which is directly related to
the length of the network. The total length of a network is the
summation of the length of each pipe,

Ltot =
∑

e

Le (22)

Important to note is that minimizing power requirement
(e.g., Eqs. (1), (10) or (15)), solely under total network length
constraint is not possible. The total length of the network does
not involve the pipe diameters, and therefore, the optimal di-
ameters in such networks would tend to infinity in order to
minimize Ẇ . In other words, a constraint involving the diam-
eters of the pipes is required to prevent the diameters to tend
to infinity during the network optimization. An interesting fea-
ture of the proposed optimization formulation (i.e., minimize∑

e ṁα
e Le) is that when one sets the exponent α equal to 0,

the problem reduces to finding the shortest tree network (i.e.,
Steiner Tree Problem [19]), i.e. to minimize Eq. (22). The op-
timal angle of branching in Steiner trees is known to be 120◦
[19]. However, it should be remembered that optimizing the
network on the sole basis of its total length is incorrect in the
sense that it would result in infinitely large pipe diameters.

6. Minimizing global cost with surface-related cost

In the previous sections, we minimized power requirement
under global size constraints (e.g., volume, surface). We dis-
covered several geometrical features of the optimized networks
under volume or surface constraint. An inconvenience of this
approach (fixed volume V or surface S) is the difficulty to spec-
ify target values for V or S. In the end, the real concern is not
really the total surface or volume of the network, it is the cost
that this surface or volume represents. The costs associated with
size limitations include for example the price of materials, man-
ufacturing, transport, etc. Therefore, it makes sense to minimize
the global cost of the network when optimize the network.

In this section, we show that the general problem formula-
tion (minimize

∑
e ṁα

e Le) derived above when a fixed value
of S or V was specified is also valid when one wants to mini-
mize the global cost associated with the tree-shaped network.
The global cost has two components: the cost of utilization
(pumping power) and the cost related to the size limitation (e.g.,
building cost). For instance, let us consider a network with lam-
inar flow and limited in size by the surface area constraint. The
global cost C can be expressed as,

C = cW

128ν

πρ

∑
e

ṁ2
eLe

D4
e

+ cS

∑
e

πDeLe (23)

The coefficient cW represents the cost of energy multiplied
by the time of utilization of the network [$ W−1] in such a way
that the first term on the right-hand side of Eq. (23) is the cost
associated with the pumping over a specified period of time
(e.g., payment period). The second right-hand side term is an
evaluation of the cost related to the size limitation, and the co-
efficient cS is the cost per unit of surface area [$/m2]. When
the building cost is dominated by the cost of materials, cS is the
product of the pipes thickness and volumetric cost of the ma-
terials. For the transport of warm fluid, the coefficient cS could
characterize the cost associated with the heat losses to the am-
bient.

Calculating the derivative ∂C/∂Dk , and setting it to zero
leads to

D5
k = cW

cS

512ν

π2ρ
ṁ2

k (24)

Introducing Eq. (24) in Eq. (23) yields the following cost
function, minimized with respect to the pipe diameters,

C = π3/5c
1/5
W c

4/5
S ν1/5

21/5ρ1/5

∑
e

(1 + 4)ṁ
2/5
e Le (25)

This expression is to be minimized with respect to the topol-
ogy. Important in Eq. (25) is that the exponent to which the
mass flow rate is raised is 2/5, the same that we found for
surface-constrained networks with laminar flow, see Table 1.
This means that the optimization results presented so far (i.e.,
optimal angles, diameters ratios) continue to apply, irrespec-
tively of the actual values of cW and cS .

It is interesting to note that there is no equipartition of the
total cost in this problem [21]. In the optimal laminar flow net-
work limited in size by surface, the cost associated with the
surface is 4 times as large as the one associated with the pump-
ing, hence the factor (1+4) in Eq. (25). Therefore, even though
the total cost is not split equally between the two contributions,
there is an optimal allocation of cost: 1/5 should go to pump-
ing and 4/5 to the surface cost (e.g., materials cost). Again, this
optimal allocation of the global cost does not depends on the
values of cW and cS .

We repeated the procedure described above for turbulent
flows and volume constrained networks. The optimization re-
sults of Tables 1–3 continue to apply for all the cases considered
(i.e., laminar flow, turbulent flow, volume constraint, surface
constraint, etc.) as the exponents to which the mass flow rates
in relations similar to Eq. (25) are the same as in Table 1.

We present in Table 4 the optimal allocation of the global
cost that is devoted to the pumping power. For example, we
saw above that 1/5 of the total cost goes for pumping in an op-
timized surfaced-constraint network in laminar regime. The rest
of the cost serves the cost associated with the size of the sys-
tem (surface in the above case). When the size limitation cost

Table 4
Optimal cost allocated for the pumping power, (Cpumping/Ctotal)opt

Flow regime V -dominated cost S-dominated cost

Laminar 1/3 ≈ 0.3333 1/5 = 0.2
Turbulent (smooth surface) 5/17 ≈ 0.2941 5/29 ≈ 0.1724
Turbulent (rough surface) 2/7 ≈ 0.2857 1/6 ≈ 0.1667
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Fig. 4. The optimal angle of branching when the cost associated with the total
length of the network is considered with the surface constraint.

is associated with the volume, a larger portion of the total cost
should be devoted to pumping than when the cost is associated
with the surface area. For example, in the laminar regime, 33%
of the global cost goes for pumping when the limitation consid-
ered is V versus 20% when surface area S is the size limiting
constraint. Turbulence decreases the cost allocation devoted to
pumping.

The total network length, Eq. (22), can be included in the
optimization problem by adding its contribution to the total cost
function, yielding

C = cW

128ν

πρ

∑
e

ṁ2
eLe

D4
e

+ cS

∑
e

πDeLe + cL

∑
e

Le (26)

where cL is a cost coefficient [$/m] associated with the net-
work length. Because Ltot does not involve the pipe diameters,
we have ∂Ltot/∂Dk = 0, and therefore Eq. (24) is still valid.
The pipe diameter ratios presented in Sections 3–5 continue to
apply. The total cost to minimize can be written as,

C =
∑

e

Le

{
5π3/5c

1/5
W c

4/5
S ν1/5

21/5ρ1/5
ṁ

2/5
e + cL

}
(27)

The new cost per unit length is the expression in braces. In
Fig. 3, we plotted the optimal angle between the outlet branches
of a Y-shaped junction that split the flow equally, like the one
in Fig. 1, as a function of the parameter c−1

L (cWc4
Sνṁ2

0/ρ)1/5.
When cL 
 (cWc4

Sνṁ2
0/ρ)1/5, the cost per unit length is domi-

nated by the cost associated with the pipe length. The problem
then reduces to finding the shortest tree network (i.e., Steiner
tree problem) leading to optimal angle of branching of 120◦.
On the other hand, when cL � (cWc4

Sνṁ2
0/ρ)1/5, the cost as-

sociated with the length of the network is negligible and the
optimal angle of branching tends to the optimal value found in
Section 4 (97.4378◦).

7. Minimizing global cost with volume and surface
limitations simultaneously

The next leap toward a more general formulation is to con-
sider a total network cost that combines all the possible contri-
butions: pumping power, surface cost, volume cost, and length
cost,

Ctot = cW

128ν

πρ

∑
e

ṁ2
eLe

D4
e

+ cS

∑
e

πDeLe

+ cV

∑
e

π

4
D2

eLe + cL

∑
e

Le (28)

The derivative of C with respect to Dk leads to a polynomial
expression of degree 6,

cW

512νṁ2
k

π2ρ
= cSD5

k + cV D6
k

2
(29)

for which an analytical expression of the form Dk = Dk(ṁk)

cannot be found. Note that the second derivative of C with
respect to Dk is positive, which confirms the existence of a min-
imal cost. The non-existence of an analytical expression does
not change conceptually the method outlined in this paper. For
every mass flow rate, there is only one optimal pipe diameter,
and we can optimize the network without pipe diameters, be-
cause the relation between Dk and ṁk , Eq. (29), is univocal.

To illustrate how Eq. (29) can be used, we considered the
problem of finding the optimal angle of branching in an equal
splitting Y-shaped junction. For the sake of simplicity, we ne-
glect the cost associated with the network length, cL → 0. Eqs.
(28)–(29) were re-written in the following way,

Ctot

128νcW
˜̇m2

ref/(πρL3
ref)

=
∑

e

L̃e

( ˜̇m2
e

D̃4
e

+ γSD̃e + γV D̃2
e

)
(30)

4˜̇m2
k = γSD̃5

k + γV D̃6
k

2
(31)

where the dimensionless mass flow rate and diameter are re-
spectively ˜̇mk = ṁ/ṁref and D̃k = D/Lref, and

γS = π2ρcSL5
ref

128νcW
˜̇m2

ref

and γV = π2ρcV L6
ref

512νcW
˜̇m2

ref

The mass flow rate and length scale used to non-dimensio-
nalize ṁ and D can be any constant scale of interest for a
given problem. The term in parenthesis on the right-hand side
of Eq. (30) represent the cost per unit length that is required to
obtain the optimal angle of branching, see Section 4. Combin-
ing Eqs. (30)–(31), the cost per unit length can be expressed as a
function of the mass flow rate only. We reported the pipe diam-

eter and cost per unit of length (c̃′ = ˜̇m2
e/D̃

4
e + γSD̃e + γV D̃2

e )
as a function of the mass flow rate in Fig. 5, for given values
of γS and γV . This cost per unit of length was then used to cal-
culate the optimal angle of branching presented in Fig. 6 [18].
The cost associated with the surface is proportional to D̃, while
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the cost associated with the volume is proportional to D̃2.
As the mass flow rate increases, the optimal diameter of the
pipe increases as well, in such a way that for small mass flow
rate (small D̃) the dominating size-limiting contribution to the
global cost comes from the surface cost. When the mass flow
rate increases (larger D̃), it is the volume limitation that domi-
nates the global cost. This might explain in part the reason why
“surface” is more important than “volume” in the lung closer to
the alveoli, i.e. where the mass flow rate is smaller, as described
in Section 4.

Introducing Eq. (30) into Eq. (31), we find that the optimized
cost associated with the pumping power is the summation of

Fig. 5. The diameter and cost per unit length as a function of the mass flow rate
when the global cost (pumping, volume and surface costs) is minimized.

Fig. 6. The optimal angle of branching obtained by minimizing the global cost
(pumping, volume and surface costs).
one forth of the surface-related cost and one half the volume-
related cost,

CW = 1

4
CS + 1

2
CV (32)

In other words, an optimized fluid tree-shaped network is
such that it distributes optimally its expenses. This optimal al-
location of cost can be a helpful tool for designing optimal
networks.

8. Surface-constrained designed porous media

In the previous sections, we wanted to limit or restrain the
network total surface area. However, several energy and thermal
engineering technologies rely on fluid–solid reactors [13,22] for
which it is beneficial to increase the total surface area of the
fluid–solid interface to maximize the density of chemical re-
actions rate. In heat exchangers, the number of transfer units
(NTU) and the efficiency are related to the surface of exchange
between the hot and cold streams [15]. For these systems, large
surface area is required to maximize the density of the function
served (e.g., heat transfer, chemical reaction).

In this section, we continue to tackle the same optimization
problem with a different point-of-view. Consider a stacking of
spheres through which a fluid flows, Fig. 7. The fluid and solid
spheres system can be treated as a porous medium. The power
requirement to drive the flow is

Ẇ ′′′ = (ṁ′′)2μ

ρ2K
(33)

The power requirement of Eq. (33) is expressed per unit of
volume. The permeability of a packing of spheres is related to
the porosity and sphere diameter in the following way [2]

K = d2φ3

150(1 − φ)2
(34)

In the packing, as the spheres only touch at zero surface
area contact points, the density of internal surface of contact
(in m2/m3) between the fluid and the spheres is equal to the
surface of one sphere time the number of spheres per unit of
volume,

S′′′ = 6(1 − φ)

d
(35)

We consider two contributions to the total cost of operation.
The first contribution is proportional to the pumping power re-
quirement, Eq. (33). The second contribution is related to the

Fig. 7. The geometry of a solid–fluid reactor (porous medium).
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density of surface area, Eq. (35). As mentioned above, in sev-
eral fluid–solid reactors it is beneficial to increase the total
surface area of the fluid–solid interface to maximize the den-
sity of chemical reactions rate. In other words, small surface
area density is detrimental, and leads to larger cost in that case.
Therefore, it makes sense to consider a surface related cost that
is inversely proportional to S′′′. The resulting total cost Ctot is

Ctot = cW ′′′
(ṁ′′)2μ(1 − φ)2

ρ2150φ3d2
+ cS′′′

d

6(1 − φ)
(36)

where cW ′′′ and cS′′′ are proportionality coefficients similar to
the ones introduced in the previous sections. The minimization
of Eq. (36) with respect to the diameter of the spheres yields

Ctot,min = 3.04
c

1/3
W ′′′c

2/3
S′′′ (ṁ′′)2/3μ1/3

ρ2/3φ

dopt = 12.16
c

1/3
W ′′′(ṁ′′)2/3μ1/3(1 − φ)

c
1/3
S′′′ ρ2/3φ

(37)

In this problem, the optimal allocation of the total cost that
goes for the pumping power is 1/3. During the optimization,
the volume of the pore network (or equivalently, the poros-
ity, φ) was kept constant. The principle-based emergence of an
optimal diameter for the solid particles of the porous medium
stresses the idea of “designed porous media” [2,6].

9. Concluding remarks

In this paper, we presented the fundamentals of fluid tree-
shaped network optimization under size constraints (i.e., sur-
face, volume, length constraints). A size limitation must be
included in the formulation of the network optimization prob-
lem for preventing unrealistic results to appear. An important
outcome of this paper is the fact that size limitations can be in-
cluded in the analysis either as a constraint to respect or directly
into a global cost function to minimize.

For both volume and surface area limitations, the mini-
mization of the power requirement is equivalent to minimizing∑

e ṁα
e Le, where α depends on the constraint invoked, and the

flow regime (Table 1). In other words, ṁα
e can be seen as a

cost per unit length. This formulation does not involve the pipe
diameters, and is only topology dependant. Again this formu-
lation is valid both when the size limitation is considered as a
constraint or in the global cost. Minimizing the global cost of
a network leads to the same topology as minimizing the power
requirement under surface or volume constraint.

The formulation presented in the preceding paragraph al-
lowed us to find several geometrical rules that govern optimal
networks. For example, in Y-shaped junctions with equal split-
ting of the flow, there exists an optimal branching angle that
depends solely on the constraint invoked and the flow regime.
Another example of these geometrical rules is the occurrence
of an optimal diameter ratio between different levels of branch-
ing that depends solely on the constraint invoked and the flow
regime, and based on the mass flow rate information.

The global cost minimization yielded the occurrence of an
optimal allocation of the global cost between pumping and size
limitation costs. In optimal network, the ratio of the global cost
that should be devoted to pumping power is solely a function of
the flow regime and dominating size constraint.

These conclusions are general and apply to any fluid net-
work. Typical fluid network optimization problems involve
large number of degrees of freedom (e.g., pipe diameters, mass
flow rates, and topology) and are thus difficult to solve. There-
fore, the results presented in this paper can be used for facilitat-
ing the design and analysis of fluid network systems.
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